$$
\mathscr{R}_{\text {Revion }} \mathscr{R}_{\text {iollems } 2}
$$

Consider the following two matrices:

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 2 \\
1 & 1
\end{array}\right] ; B=\left[\begin{array}{lll}
2 & 0 & 1 \\
0 & 1 & 3
\end{array}\right]
$$

1) Describe the columnspace of each matrix, that is, the span of the columns of the matrix.
2) Consider the associated linear transformations T_{A} and T_{B}. Describe the domain, codomain, and range of these functions.
3) Describe T_{A} and T_{B} as functions: that is, if the input is, say, $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ then what is the output?
4) Let $T_{1}=T_{A} \circ T_{B}$. Find $\left[T_{1}\right]$, the matrix associated to T_{1}. (Hint: use matrix multiplication. Use the domain and codomain of these functions to determine in which order to multiply)
5) Describe T_{1} as a function, as well as its domain, codomain, and range.
6) Let $T_{2}=T_{B} \circ T_{A}$. Find $\left[T_{2}\right]$, the matrix associated to T_{2}.
7) Describe T_{2} as a function, as well as its domain, codomain, and range.
8) Are any of $T_{A}, T_{B}, T_{1}, T_{2}$ one-to-one and/or onto?
9) Which of $T_{A}, T_{B}, T_{1}, T_{2}$ are invertible?
10) For the T_{i} that are invertible, give its domain, codomain, and range.
11) For the T_{i} that are invertible, find $\left[T_{i}\right]$.
12) For the T_{i} that are invertible, verify that $\left[T_{i}\right] \cdot\left[T_{i}\right]^{-1}=I_{n}$ and that $\left[T_{i}\right]^{-1} \cdot\left[T_{i}\right]=I_{n}$.
13) Find $A^{-1} \cdot T_{1} \cdot B \cdot T_{2} \cdot A^{-1}$, if it makes sense to do so.
